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This study examines the growth of tropical cyclone (TC) intensity forecast errors

and related intensity predictability for the NOAA operational Hurricane Weather

Research and Forecasting (HWRF) model. Using operational intensity forecasts dur-

ing the 2012 to 2016 seasons, two conditions for a limited range of TC intensity

predictability are demonstrated, which include (a) the existence of an intensity error

saturation limit, and (b) the dependence of the intensity error growth rate on storm

intensity during TC development. By stratifying intensity errors based on different

initial intensity bins, it is shown that TC intensity error growth rate is relatively

small (∼0.3 kt h−1) at the early stage of TC development, but it quickly increases to

∼1 kt h−1 during TC intensification. Of further importance is that the intensity error

saturation varies in the range of 14–18 kt in different ocean basins, thus suggesting

the potential dependence of the intensity predictability on large-scale environment.

Additional idealized experiments with the HWRF model confirm the saturation of

intensity errors, even under a perfect model scenario. The existence of the inten-

sity error saturation together with the finding of a faster error growth rate for higher

intensity suggests that the TC dynamics possesses an inherent limited predictability,

which prevents us from reducing the intensity errors in TC dynamical models below

a certain threshold.

KEYWORDS

hurricane intensity, HWRF model, intensity error growth, intensity forecasting,

practical predictability, tropical cyclones

1 INTRODUCTION

The predictability of tropical cyclone (TC) intensity is an

open problem. Similar to many atmospheric systems, TC

dynamics may possess some inherent chaotic properties that

are not fully understood at present due to various nonlinear

dynamic and thermodynamic feedbacks. Among several diffi-

culties related to the definition of the TC intensity predictabil-

ity, the main obstacle to our current understanding of intensity

predictability lies perhaps in the fact that this problem is

practically time-dependent. That is, one has to examine the

growth of intensity forecast errors at all stages of TC develop-

ment, starting from the early tropical depression stage to the

final dissipation stage, for which the traditional predictability

formalism based on the stationary statistics cannot be

applied. Thus, examining the characteristics of TC intensity

errors at different stages of TC development is necessary

to quantify the TC intensity predictability for operational

applications.

Except for stochastic forcings, TC intensity forecast errors

in dynamical models are generally attributed to two major fac-

tors, which include initial condition errors and model errors

(Davis et al., 2010; Gopalakrishnan et al., 2012; Tallapragada

et al., 2014; Judt et al., 2016). For regional dynamical models,

lateral boundary conditions provided by a global forecasting

system introduce another source of uncertainty, which could

lead to large intensity differences if a model storm is guided

into a wrong environment, even with a perfect regional model
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and initial conditions (e.g. DeMaria, 2010; Tien et al., 2013).

These sources of error strongly evolve in time due to the non-

linear nature of the atmosphere, and it is difficult to separate

their relative roles in real-time intensity forecasts.

The problem of intensity errors is further complicated by

the fact that TCs are multi-scale systems in which errors

at different scales grow differently. In Lorenz’s predictabil-

ity framework, errors at the convective scale quickly grow,

saturate, and then propagate to larger scales until the entire

spectrum of errors is saturated, which underline the limited

predictability of atmospheric multi-scale flows (e.g. Lorenz,

1969; 1990; Leith, 1971; Rotunno and Snyder, 2007; Palmer

et al., 2014; Durran and Gingrich, 2014). This predictability

paradigm, the so-called statistical predictability in Métais and

Lesieur (1986), is based on a fundamental property that the

background flow is statistically homogeneous and stationary

so that errors can saturate after a certain time. However, for

TCs, such a stationary background spectrum is not applicable,

because TCs always evolve with time in favourable environ-

mental conditions until they reach the maximum intensity

limit. (Kieu, 2015; Kieu and Wang, 2017). A study of a

two-dimensional turbulence model by Métais and Lesieur

(1986) showed indeed that the predictability range in their

turbulent model could change by as much as 50% by sim-

ply relaxing the stationary assumption for the bounding error

curve. This sensitivity of predictability on the background

dynamics thus highlights the key difficulty in defining the TC

intensity predictability for practical purposes.

Because of this non-stationary nature of TC background

dynamics, our approach to understand the TC intensity error

growth during TC development must be different from that

during the quasi-stationary stage as examined in Hakim

(2013). Specifically, one needs to rely on the so-called tran-

sient1 (or non-central) property of a deterministic dynamical

system to examine the growth of intensity errors during the

TC intensifying period (Lorenz, 1963). In this determinis-

tic framework, the predictability of a dynamical system can

be studied using the familiar properties of chaotic dynamics

such as the existence of positive leading exponents, or the

boundedness and denseness of chaotic attractors.

The current practice of using point-like metrics such as the

maximum sustained 10 m wind (VMAX) or the minimum cen-

tral pressure (PMIN) to measure TC intensity offers a unique

context to examine the characteristics of intensity errors from

the perspective of deterministic dynamics. Indeed, the ver-

ification of TC intensity forecast errors shows intriguingly

that TC intensity errors do appear to approach a saturation

1We follow the Lorenz (1963) definition and use the phrase “transient

stage” to refer to the non-central trajectories of a dynamical system that are

approaching but are not contained in a limiting trajectory. By this definition,

the transient stage of TC development would correspond to the intensifi-

cation stage of TCs. Note that this transient property, which is related to

the non-central trajectories, differs from the transient growth of errors along

an orbit inside an attractor, which is represented by local Lyapunov vectors

(Lorenz, 1996; Trevisan and Pancotti, 1998).

limit regardless of the ocean basins or modelling systems

(Franklin and Brown, 2008; DeMaria, 2010; Tallapragada

et al., 2014; 2015; Bhatia and Nolan, 2015; 2016; Kieu and

Moon, 2016, hereinafter KM16). For example, the 4–5 day

intensity error saturation in operational numerical models

has stayed around 15–17 kt in the Eastern Pacific (EPAC),

∼14–16 kt in the North Atlantic (NATL), or ∼16–18 kt in the

Northwestern Pacific (WPAC) basin (KM16). Although the

intensity forecast skill has been gradually improved over last

several decades, the reduction in intensity errors in opera-

tional dynamical models turns out to be much smaller than the

track error reduction. The persistence of this small reduction

in the intensity error saturation among different modelling

systems and ocean basins therefore raises a natural question

of whether and why TC intensity errors approach a saturation

limit rather than linearly increasing with forecast lead times.

In the context of idealized simulations, KM16 addressed

this question by examining the property of the TC intensity

at the maximum potential intensity (MPI2) limit from the

perspective of deterministic dynamics. Using Rotunno and

Emanuel (1987)’s axisymmetric model, KM16 demonstrated

the existence of a chaotic attractor at the MPI equilibrium

that possesses an intrinsic variation of ∼16 kt in a long inte-

gration under the perfect model assumption. Similar to the

Lorenz three-variable model, the sensitive dependence of the

TC intensity error growth on initial conditions inside this

bounded MPI attractor imposes a limit on our ability to reduce

the VMAX errors at 4–5 day lead times. KM16’s further esti-

mation of the predictability range for TC intensity forecasts

based on the VMAX metric suggests that the range of the TC

intensity predictability is around 3 days, and it may be shorter

for initially stronger TCs. This range of predictability is con-

sistent with the estimation in Hakim (2013) and Brown and

Hakim (2013), which is based on the analyses of both the

inverse linear and nonlinear models at the quasi-stationary

equilibrium.

If the above chaotic nature of TC dynamics proposed in

KM16 is correct, an immediate consequence is that the inten-

sity error growth should be different between the mature stage

and the transient stage (i.e. the intensification period) for

which analyses of the growth rate inside the MPI attractor in

KM16 could not fully capture. As a step to further examine the

TC intensity predictability and the TC intensity error growth

during the intensification period, analyses of real-time inten-

sity error growth rate for two operational models currently

maintained by the NOAA National Centers for Environmen-

tal Prediction (NCEP) – the Hurricane Weather Research and

Forecasting (HWRF) and the Geophysical Fluid Dynamics

Laboratory (GFDL) models – will be presented in this study.

Our main objectives of this study are (a) to quantify the depen-

dence of the intensity error growth rate on the storm intensity

2In this study, the MPI limit is understood as the maximum tangential wind

in a statistical quasi-stationary sense rather than an instantaneous maximum

value (Hakim, 2011)
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during TC development, and (b) to examine how the inten-

sity error saturation varies in different basins and the possible

implications of this error saturation for practical intensity pre-

dictability (PIP). Addressing these issues will help confirm

the nature of TC chaotic dynamics that is not currently well

understood, thus revealing the potential limit of operational

models in reducing intensity errors in future.

The rest of this work will be presented as follows: section 2

presents necessary conditions for the TC intensity to have a

limited predictability. Section 3 discusses the methodology

to obtain intensity error growth rates from real-time forecasts

at different stages of TC development. Analyses of inten-

sity errors and the related growth rate are then presented in

section 4. Section 5 discusses results from idealized experi-

ments with the HWRF model under a perfect model scenario,

and some concluding remarks are given in the final section.

2 CONDITIONS FOR TC INTENSITY
LIMITED PREDICTABILITY

Because our examination of the TC intensity predictability in

this study is from the perspective of a deterministic frame-

work, an important requirement to be considered for any

chaotic dynamical system is the existence of a bounded attrac-

tor whose size determines the averaged differences between

two randomly initial states. In Lorenz’s three-variable model,

the existence of this saturation limit is guaranteed by the

Lorenz attractor that any initial condition will be quickly

pulled in and subsequently trapped inside this attractor.

Together with the sensitive dependence on the initial condi-

tion (i.e. a positive leading Lyapunov exponent), this bounded

property of the Lorenz attractor leads to a strong consequence

that the time interval T required for an initial error 𝜖0 to grow

and approach the saturation limit Γ will be given by

T ∼ ln
Γ
𝜖0

(1)

As seen from Equation 1, the saturation limit Γ severely

constrains our ability to lengthen the range of predictability

T; a 10-time reduction in the initial error 𝜖0 will only help

lengthen the range of predictability by just a factor of ln(10) ∼
2.3. As such, the existence of a stationary error saturation

limit, which represents the size of the attractor, is the first

condition that one needs to quantify when studying the pre-

dictability limit for TC intensity. Whether an error saturation

limit exists for the TC intensity problem and, if so, how this

intensity error saturation varies with space and time, is the

first condition that we have to determine.

Assuming the existence of an error saturation Γ for TC

intensity, a second important issue is how fast an initial error

will approach this saturation limit. In principle, one could

have a system in which an initial error could grow extremely

slowly such that it would take forever to reach saturation.

In this case, the range of predictability is so long that the

FIGURE 1 Illustration of the intensity error evolution during the

developing stage (black solid curve) for an initial small error at t = 0. In the

interval i, the growth rate is assumed to be 𝛼i, and Δti denotes the time

required for the error in the ith interval to increase by an increment Δ𝜖.

Here, T denotes the total time that the initial error would take to

asymptotically approach the saturation limit Γ. The thick dashed line

represents the duration when the growth rate slows down as the error

approaches the saturation limit Γ inside the MPI attractor. Note that the

overshooting of the VMAX error is to highlight the error growth during the

transient stage, which differs from the error growth inside the attractor

system can be technically considered predictable. From the

dynamical standpoint, the error growth required for a system

to possess limited predictability therefore needs to satisfy

certain properties, which are ultimately related to the exis-

tence of a positive leading Lyapunov exponent. For the TC

intensity forecast problem, such a requirement of a positive

Lyapunov exponent is, nonetheless, not applicable during the

intensification stage, because the Lyapunov exponents are

not defined outside the attractor (Lorenz, 1996; Legras and

Vautard, 1996; Trevisan and Pancotti, 1998). Thus, another

condition for the intensity error growth rate during the TC

intensification stage needs to be defined differently.

To facilitate our subsequent analyses, we establish in this

section a requirement for the TC intensity error growth rate

during the transient stage that could ensure the limited pre-

dictability. Specifically, we assert that a necessary condition

for an initial intensity error to approach an error saturation Γ
in a finite time is that the error growth rate has to be larger

for a higher intensity during TC development. Indeed, let us

divide the range of the error saturation limit [0,Γ] into N inter-

vals with an increment of error Δ𝜖 = Γ∕N as illustrated in

Figure 1. Assume that the error growth rate within each inter-

val is 𝛼i, the time interval Δti that the error will grow in an

interval i is then given by Δti = Δ𝜖∕𝛼i. Thus, the total time

for the initial error 𝜖0 to reach Γ is

T = Δ𝜖
𝛼1

+ Δ𝜖
𝛼2

+ · · · + Δ𝜖
𝛼N

= Δ𝜖
𝛼0

i=N∑

i=1

1

𝜆i , (2)

where we have assumed that the successive growth rate

𝛼i=𝜆𝛼i−1= · · · =𝜆i𝛼0. Apparently, the geometrical series (2)

will converge to a finite value for N → ∞ if and only if

𝜆−1 < 1 or equivalently 𝜆 > 1. This implies that the error



1806 KIEU ET AL.

growth rate at the later time 𝛼i has to be faster than the error

growth rate at the previous time 𝛼i−1 so that T is finite. Oth-

erwise, the series (2) will not converge; i.e. there would exist

an orbit that is stable at some point along the orbit such that

any small initial error starting at this point would subside over

time, thus precluding the existence of a chaotic attractor (see

Lorenz (1963) for a more precise definition of stable orbits

and related properties). Because TCs strengthen with time

during their intensifying period, the condition 𝜆 > 1 justifies

our above statement about the faster intensity error growth

rate for higher intensity.

We stress that our aforementioned statement will not hold

for all stages of TC development. This is because the growth

rate has to eventually slow down as the error approaches a sat-

uration limit. As a result, our statement about a faster intensity

error growth rate for higher intensity should be applied only

to the intensifying period. After a storm reaches its mature

stage, our statement should be no longer valid (dashed line in

Figure 1).

In summary, we propose two conditions that one needs to

verify if the TC intensity predictability is limited:

(a) the existence of a stationary intensity error saturation, and

(b) a faster intensity error growth rate for higher intensity

during TC intensification.

Our hypothesis is that these conditions are intrinsic proper-

ties of TC dynamics, which underline the characteristic of

the intensity error curve in current operational TC models,

regardless of how good the models are. This is an impor-

tant hypothesis that needs to be carefully verified, because it

would imply that a part of the current intensity error satura-

tion is not rooted in model deficiencies but actually in the TC

dynamics. Thus, the ability to improve TC intensity forecast

accuracy will have some barrier that we may not overcome

in future, even if all favourable environmental conditions are

maintained and the TC models are perfect.

3 METHODOLOGY

3.1 Real-time intensity analysis

With the two conditions required for examining the TC pre-

dictability as established in section 2, we present in this

section our methodology to quantify these conditions from

real-time forecasts. Unlike idealized simulations for which

one can readily control environmental factors governing TC

development, real-time TC intensity forecasts suffer from sev-

eral issues that make them difficult to directly verify the above

conditions and so some specific assumptions must be made.

First, real-time forecasts contain all cycles with different

initial intensity at all stages of TC development. Therefore,

general intensity error statistics will include both the intensi-

fying and the weakening phases, which do not characterize the

intrinsic TC intensity error growth during the intensification

stage as needed. This is because any change in TC intensity

due to the movement of TCs into a different environment or

making a landfall would not represent the intrinsic growth of

TC intensity, but a manifestation of changes in the large-scale

environment. For example, a weakening phase of a storm can

be well predicted if its landfalling track is correctly forecast.

Such a track-dependent intensity change represents the depen-

dence of TC intensity on large-scale conditions rather than

the TC intrinsic intensity predictability (IIP) that we wish to

examine in this study.

Second, real-time forecasts contain influences from many

external factors such as dry air intrusion, vertical wind shear,

or upper-level trough interactions which may produce inten-

sity fluctuations sufficiently larger than those associated with

the IIP. There is no effective way to isolate these external

factors in real-time intensity forecasts, except in the ideal-

ized framework. Because of these uncontrollable factors, any

predictability information extracted from real-time forecasts

should represent the practical predictability of TC intensity

rather than the IIP. While our ultimate goal is to determine the

IIP, the modest objective of this study is to maximally extract

the information of the PIP from the real-time data.

Given the above issues with the real-time forecasts, it is

thus critical to minimize the impacts of the weakening cycles

related to TC movement or inimical environment before one

can obtain useful PIP information. To this end, we first

divide the entire life cycle of a TC into intensifying peri-

ods, quasi-stationary periods, and weakening periods, using

the initial 12 h change of the maximum 10 m sustained wind

(VMAX) for each cycle provided in the post-analysis best track

dataset (bdecks). For each forecasting cycle, the first 12 h

change of the observed VMAX in the bdecks is calculated for

this initial time, i.e. ΔV = VMAX(12 h) − VMAX(0 h). All

cycles with ΔV > 0 are identified as intensifying cycles and

then stratified into six different initial intensity bins, based on

the initial value of VMAX in the ranges 25–45, 45–65, 65–85,

85–105, 105–125, and 125–180 kt as reported in the bdecks.

With these intensity bins, an intensity error growth rate,

denoted by 𝜖, for each bin is calculated as a change of the

model forecast VMAX error over a time interval of 18 h, i.e.

𝜖 =
ErrorVMAX

(18 h) − ErrorVMAX
(0 h)

18 h
, (3)

where ErrorVMAX
(18 h) and ErrorVMAX

(0 h) are the VMAX

errors between the model forecast intensity and the observed

intensity at t = 18 h and at the initial time, respectively.

The choice of a fixed time interval of 18 h in the above

error growth calculation is to minimize the impacts of model

spin-down or spin-up, which often takes place during the

first 6–12 h of model integration (Tallapragada et al., 2014;

Pu et al., 2016). On the other hand, it is short enough to ensure

that the intensity error saturation is not reached. The latter

requirement is necessary because of our focus on the error

growth during the transient period before TC intensity errors
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FIGURE 2 Stratification of the first 6 h change of the maximum 10 m wind (VMAX, kt, black) and the minimum surface pressure (PMIN, hPa, grey) for the

operational HWRF model during 2012–2016 seasons in the NATL basin

experience saturation, which can result in an underestimation

of 𝜖, as will be shown later.

Along with analyses of the error growth rate 𝜖, the time

interval required for TC intensity errors to approach saturation

is also estimated for each intensity bin. To be specific, an error

saturation time will be defined to be the first forecast lead

time, denoted by 𝜏, at which 𝜖 < 0.1 kt h−1. This definition of

𝜏 is more flexible that the traditional signal-to-noise ratio, as

it allows for computing 𝜏 in any basin and any intensity bin

regardless of the exact value of the intensity error saturation

Γ. Similar to the analyses of 𝜖, all calculations of 𝜏 are car-

ried out only for intensifying cycles to ensure that favourable

conditions for the TC development are maintained.

Forecasts used in this study were all taken from the HWRF

and GFDL models for the WPAC, the NATL, and the EPAC

basins during 2012–2016, which are archived in real-time

forecast files (adeck) in the Automated Tropical Cyclone

Forecasting System (ATCF) format (Sampson and Schrader,

2000) . Along with these real-time forecasts, the two most

recent upgrade versions of the HWRF model in 2015 (H215;

Tallapragada et al., 2015) and in 2016 (H216; Biswas et al.,
2016) were also employed to further isolate the inhomo-

geneity in the annual upgrades of the operational models.

For verification, the bdecks provided by the National Hur-

ricane Center (NHC) and Joint Typhoon Warning Center

(JTWC) were utilized. Except for a slight initial difference

between the real-time TC records (known as TCvitals) and

the post-analysis best track, the overall initial TC intensity is

well matched between the model and the observation, thus

allowing us to effectively stratify the statistics of the model

intensity errors according to the observed intensity.

Among several caveats to our approach for real-time inten-

sity analyses, we should highlight at this point an important

difference between structure errors and strength errors that

our methodology could not fully capture. Technically, a struc-

ture error refers to an initial error in the three-dimensional

(3D) vortex structure, whereas a strength error specifically

refers to the error of TC initial strength represented by

point-like metrics such as the VMAX or the minimum central

pressure (PMIN). Although structure errors are essentially part

of an initial condition problem, errors related to the vortex

initial structure are however not well reflected in the ini-

tial VMAX errors. One could have in principle a zero initial

strength error but an incorrect vortex initial structure such as

a too weak warm core or a too high outflow level. Such an ini-

tial vortex with a perfect match between the model VMAX and

the observed VMAX but a wrong vertical structure can cause

any model to experience rapid initial adjustment and produce

large intensity errors (Gopalakrishnan et al., 2012; Tallapra-

gada et al., 2014; Kieu, 2015), even if the model is perfect.

Therefore, characterizing the TC intensity by the point-like

metrics such as VMAX or PMIN alone is generally not sufficient,

because these point-like metrics could not fully represent the

TC 3D structure as discussed in Vukicevic et al. (2013).

To see the impacts of structure errors on the intensity

forecasts, Figure 2 shows an analysis of initial intensity adjust-

ment during the first 6 h obtained from the HWRF model dur-

ing the 2012–2016 seasons in the NATL basin. One notices

in Figure 2 the persistent spin-down of the model vortex for

the cycles with an initial intensity of 100 kt and above, despite

the good match between model VrmMAX and observed VrmMAX
at initial time. As discussed in Tallapragada et al. (2014),

this initial spin-down of strong intensity cycles is systemat-

ically related to improper vortex structures that the current

HWRF initialization scheme is not able to handle, no matter

how closely the model initial VMAX can match the observed

VMAX.

In practice, the problem of TC structure initialization is

very hard to address and is mostly represented by a dis-

crete vortex depth indicator in case the observation of the

TC 3D structure is not available (Trahan and Sparling, 2012).

Hence, these strength and structure errors are not separable

and become increasingly important at the strong intensity

stage. In the current HWRF model, it is ultimately the struc-

ture errors that are responsible for the model initial spin-down

for an initial intensity > 100 kt, even when the model initial
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VMAX could match well the observed VMAX (Figure 2). In this

case, the 18 h intensity error growth for strong storms could be

just a manifestation of both the initial strength errors and the

structure errors and there is no effective way to separate them.

Because of this, one should be cautioned when analyzing the

intensity error growth for intensity bins > 100 kt.

3.2 Idealized experiments

While real-time analyses could capture actual intensity error

saturation for different basins, an apparent issue with the

real-time verification is the different environmental condi-

tion in different basins, which makes it hard to isolate the

nature of the intensity error growth. To this end, the idealized

configuration of the HWRF model (version 3.7) was used to

further examine the intrinsic growth of TC intensity errors.

The model was configured with identical settings as in Kieu

et al. (2016), but with double-nested domains at a horizontal

resolution of 9 and 3 km instead of triple-nested domains due

to the requirement of a large number of integrations in this

study.

All idealized experiments were designed on an f -plane cen-

tred at 12.5◦N in a quiescent environment with sea surface

temperature fixed at 300K. The model was initialized with

the Jordan (1958) mean tropical sounding and a weak vor-

tex that has the maximum surface wind of 20 m s−1 and the

radius of maximum wind (RMW) of 90 km with 61 vertical

levels. Under a perfect model scenario, a control (CTL) exper-

iment was integrated for 5 days to serve as a reference trajec-

tory. The CTL experiment captures a rapid intensification of

∼ 50 kt per 24 h during the 12 to 48 h period, followed by a

quasi-stationary stage after 3 days into integration (Figure 9).

A set of sensitivity experiments was then conducted with

different realizations of random wind perturbations added

to the CTL trajectory starting from t = 12 h and ended at

t = 72 h at an interval of 6 h to mimic the impacts of random

errors at different stages of TC development. Unlike the ide-

alized experiments in Nguyen et al. (2008) in which random

perturbations were added only at the initial time, our design

introduces random perturbations at different stages of the vor-

tex intensification. By quantifying the subsequent growth of

these errors at different stages, it is possible to assess how the

intensity error growth depends on the model vortex strength

without the severe issue of the model spin-up or spin-down as

in the operational mode. For the CTL trajectory in this study,

these instants of time correspond well to the intensity bins

analyzed in the real-time analyses .

To increase the representativeness of the sampling, a range

of random wind perturbation amplitudes between 0.5 and

5 m s−1 at intervals of 0.5 m s−1 were added to the CTL tra-

jectory at each stage of the model vortex development. A

total of 110 experiments were therefore conducted. (The ran-

dom perturbations were added at 11 times during the vortex

development between 12 and 72 h.) In this perfect model sce-

nario, the spread of the intensity deviations relative to the CTL

trajectory can represent the growth of intensity errors due to

random perturbations in the HWRF model as expected.

4 TC INTENSITY ERROR
CHARACTERISTICS

4.1 Intensity error saturation

With the first requirement related to the existence of an

error saturation, Figure 3 shows the verification of real-time

intensity forecasts during the intensifying period for both the

HWRF and GFDL models during 2012–2016 in the three

major basins. Except for the NATL basin, one notices in

Figure 3 that TC intensity errors generally grow from 0 to

72 h, and quickly slow down and approach a saturation limit

at 4–5 day lead time. A closer examination of Figure 3 shows

that both the HWRF and GFDL models appear to capture a

similar behaviour of the error saturation with a lower satu-

ration value in the EPAC basin (∼ 14–17 kt), and the largest

value in the WPAC basin (∼ 18–20 kt). Assuming that the

observational error of VMAX is ∼ 7.5 kt (Torn and Snyder,

2012; Landsea and Franklin, 2013) and it is independent from

model forecast errors, it can be then obtained that the inten-

sity error saturation Γ is ∼ 12–14 kt in the EPAC basin, and

Γ ∼ 14–18 kt in the WPAC basin. That both modelling sys-

tems with different treatments of dynamical cores, nonlinear

coupling, physical parametrizations, and domain configura-

tions display the same characteristics of error growth among

the three basins indicates that the TC intensity error saturation

is not the same, but depends upon the ambient environment

that TCs are embedded in.

While the error saturations are apparent in the WPAC and

EPAC basins, it is intriguing to see that the intensity errors

in the NATL basin appears to exhibit somewhat different

characteristics with a linear growth up to 4–5 day lead time,

especially in the GFDL model. This linear growth is consis-

tent with the reports in DeMaria et al. (2014), Emanuel and

Zhang (2016), Bhatia and Nolan (2016), and Bhatia et al.
(2017) that are based on different verification periods for

the NATL basin during the 2009–2015 and 2011–2015 sea-

sons. At first sight, the linear curve seems to suggest no error

saturation limit in the NATL basin as in other two basins.

However, more detailed examination of the TC climatology

in the NATL basin reveals that the linear growth of inten-

sity errors turns out to be specifically pertinent to the NATL

basin due to the dominance of weak storms with prolonged

lifecycles extending beyond 35◦N in this basin during the

2012–2016 seasons.

To confirm such impacts of weak storms on the intensity

error saturation, Figure 4 shows the intensity statistics for

cycles with an initial intensity of Category 1 and above3 as

3The choice of Category 1 and above for the strong storm statistics is solely

because of the lack of hurricane cases during 2012–2016 in the NATL basins.
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(a) (b)

FIGURE 3 (a) Verification of the real-time intensity forecasts for the HWRF model in the NATL (red), WPAC (black), and EPAC (blue) basins during

2012–2016. (b) is as (a), but for the GFDL model [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIGURE 4 As Figure 3, but for TCs that are of Category 1 and above [Colour figure can be viewed at wileyonlinelibrary.com]

indicated in the best track data for both the HWRF and GFDL

models. Similar to the verification for intensifying cycles

shown in Figure 3, all cycles with landfalling points or extra-

tropical cyclone transition classification reported in the best

track data are also excluded in this analysis of strong storms

to ensure that the development of these strong intensity cycles

would be least influenced by the storm track or unfavourable

conditions.

It is of interest to see in Figure 4 a large shift in the intensity

characteristics for the NATL basin, with a more apparent

Our try with Category 4 and above shows even more evidently the saturation

of intensity errors for stronger TCs, but the statistics are not significant. (Of

70 TCs during 2012–2016 NATL seasons, there are only 27 major hurricanes

with four reaching Category 4 and above).

error saturation around 14–15 kt for the HWRF model and ∼
17–18 kt for the GFDL model. In contrast, the same verifica-

tion of Category 1 and above storms in the EPAC or WPAC

does not show much change in the intensity error saturation

curve. This insensitivity of the statistics in the EPAC and

WPAC basins indicates the minimal effect of weak storms on

the error saturation in these two basins where there are many

more strong storms than in the NATL basin. Because the

majority of TCs in the NATL basin during 2012–2016 period

were weak storms, it is therefore clear that the full statistics

for the NATL basin could not reveal the error saturation as

shown in Figure 3.

Of further significance is that the error saturation for strong

storms in the NATL basin shown in Figure 4 is slightly

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 5 (a) As Figure 3, but for the retrospective experiments during the 2012–2015 seasons using the 2015 version (solid) and the 2016 version (dashed)

of the HWRF model in the NATL (red) and the EPAC (blue) basins; (b) is as (a), but for the TC cases in the NATL basin that are of Category 1 and above

[Colour figure can be viewed at wileyonlinelibrary.com]

smaller than that in the EPAC basin (∼ 14–17 kt for the

HWRF model), but is considerably smaller than that in the

WPAC basin (similar results appear in e.g. Bhatia and Nolan,

2013; Bhatia et al., 2017). Although the observed VMAX in

the WPAC basin has more uncertainty due to lack of the

reconnaissance observation that could affect the VMAX error

saturation in this basin, it should be noted that the differ-

ent error saturation in different basins indicates a profound

role of large-scale conditions on the MPI attractor. How the

MPI attractor depends on the environmental parameters such

as sea surface temperature, tropical troposphere temperature,

or stratification is still elusive at present. However answer-

ing this question would require sensitivity experiments that

are outside the scope of the operational error statistics in this

study.

While the real-time verification of the HWRF and GFDL

models could consistently capture the intensity error growth

and subsequent saturation, an issue with real-time forecasts

is that operational models are annually upgraded. Therefore,

the verification shown in Figures 3 and 4 contains five differ-

ent model versions in five different years during 2012–2016.

This inhomogeneity in the HWRF model configuration makes

it hard to fully justify the saturation of intensity errors. To

remove the impacts of different model versions on the char-

acteristics of the intensity error growth, Figure 5 shows the

intensity verification for the HWRF model obtained from the

H215 and H216 retrospective experiments. These two ret-

rospective experiments share the same period from 2012 to

2015 for both the EPAC and the NATL basins4, and the homo-

geneous verifications can therefore be compared directly.

4Due to operational constraint and priorities, both the H215 and H216

upgrades of the HWRF model did not have full retrospective testing for the

WPAC basin during 2012–2015. So, only experiments in the EPAC and the

NATL basins are presented in this retrospective analysis.

Similar to the real-time verification, one notices in

Figure 5a again the rapid intensity error growth during the

first 2 days, followed by the error saturation ∼12–13 kt in the

NATL basin and ∼14–15 kt in the EPAC basin for both H215

and H216. Although the H216 version has a slight improve-

ment in the NATL basin, the similar intensity error curves

among all retrospective experiments and the real-time fore-

casts reiterate the unique properties of the intensity error

growth curve as obtained from real-time statistics. Indeed,

our analyses of intensity errors for several other operational

models all show analogous error growth with the smallest sat-

uration limit in the NATL basins and the largest in the WPAC

basin, although the exact values of the error saturation slightly

vary from one model to the other (not shown).

Because of the contribution from weak storms in the NATL

basin during the 2012–2015 seasons, Figure 5b shows addi-

tional intensity verification for TCs of Category 1 and above,

similar to the stratification shown in Figure 4 for real-time

forecasts. It is again evident from this strong storm verifi-

cation that the intensity errors exhibit a saturation of 13 kt

after just 2 days into integration in the NATL basin. This

strong storm verification highlights the different error growth

between weak and strong storms as captured in real-time

forecasts, and supports the existence of the intensity error

saturation.

As discussed in section 3, the existence of the intensity error

saturation demonstrated in Figures 3–5 is by no means suffi-

cient to conclude that TC intensity has limited predictability.

However, the fact that the error saturation exists is itself

important, because it demonstrates that a necessary condi-

tion for such a limited intensity predictability is warranted,

irrespective of its exact value. We now turn to the second

condition which implies that limited predictability must be

related to how fast an intensity error would evolve during the

TC intensification period.

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

FIGURE 6 Intensity error growth rate (columns, knot h) as a function of intensity bins obtained from the real-time TC intensity forecasts during 2012–2016

in the NATL basin (black), the EPAC basin (blue), and the WPAC basin (red) for (a) the HWRF model, (b) the GFDL model, (c) the H215 retrospective

experiment, and (d) H216 retrospective experiments during 2012–2014. Error bars denote 95% confidence intervals [Colour figure can be viewed at

wileyonlinelibrary.com]

4.2 Intensity error growth rate

Given the condition related to the error growth rate 𝜖 as dis-

cussed in section 2, Figure 6a shows 𝜖 as a function of the

initial intensity bins, which is obtained from the HWRF fore-

casts for the 2012–2016 seasons. It is apparent in Figure 6a

that 𝜖 indeed exhibits a strong dependence on the storm

strength, with a faster growth rate for higher initial inten-

sity. On average, 𝜖 is ∼0.3 kt h−1 for the 25–45 kt bin, and

increases to∼1.1 kt h−1 for intensity bins larger than 85 kt dur-

ing TC development (Figure 6a). Although the value of 𝜖 is

slightly different among the three basins, such an increase of

𝜖 with storm strength is very persistent in all basins and for

both operational models. Despite some differences in defin-

ing the intensity error growth rate and intensity bins, it can

be seen in Figure 6 that the faster error growth rate for higher

storm initial strength is consistent with a similar analysis for

GFDL model in the NATL basin as shown in Bhatia and

Nolan (2013). A direct implication of this property is that

the HWRF model will more quickly undergo a large inten-

sity error as TCs intensify, making it harder for the model

to predict TC intensity with time, at least from the perspec-

tive of the VMAX metric. Note that this behaviour of the error

growth rate is not only seen in TCs, but also applies to other

nonlinear systems with limited predictability (e.g. the growth

of different eigenmode modes in the Eady problem in Farrell

(1982)).

Another important point in Figure 6 is that 𝜖 appears to

reach a limit after the VMAX > 85 kt. Specifically, 𝜖 increases

quickly at first but then stays nearly constant around 1.1 kt h−1

for the 85–105 kt and 102–125 kt bins, and is somewhat

smaller for the 125–180 kt bin. Although the growth rate for

the most intense bin 125–180 kt has a large uncertainty due

to a small sample size, the upper bound on 𝜖 at the mature

stage accords with the existence of a chaotic attractor at the

MPI limit recently proposed in KM16. As discussed in KM16,

the existence of a chaotic MPI attractor implies that any error

will quickly occupy the entire attractor due to (a) the sensi-

tive dependence on initial conditions inside the attractor, and

(b) the boundedness of the attractor5. From this perspective,

the saturation of 𝜖 seen in Figure 6a is an indication that TCs

enter the chaotic attractor at their mature stage. As a result, the

same error growth inside the attractor reflects the consistent

5Similar to study by KM16, an MPI attractor is defined as a bounded region

in the phase space surrounding the MPI equilibrium that a TC will eventually

settle at its quasi-stationary stage.
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leading Lyapunov exponent of the attractor, regardless of TC

initial conditions.

Although the upper bound of 𝜖 is in accordance with the

existence of a chaotic attractor, we should recall that an actual

intensity error in a regional model is not a pure result of

initial condition errors, but depends on several other factors

including (a) unbalance adjustment due to structure errors, (b)

model internal errors, and (c) lateral boundaries from global

models. Of the three, the initial unbalance is most significant

for intensity bins > 105 kt, which accounts for a large 𝜖 due

to the model spin-down during the first 6–12 h (cf. Figure 2).

Since our definition of 𝜖 is based on a fixed interval 0–18 h,

the initial adjustment issue is not too severe, at least for ini-

tially weak storms. It is thus reasonable to expect that the

increase of 𝜖 with the TC strength seen in Figure 6 is a gen-

eral property of TC dynamics for initial intensity bin <85 kt,

for which the HWRF real-time statistics are sufficiently

robust.

Regarding model errors and lateral boundary condition

errors, there is no simple way to quantify these errors as

a model is integrated in time, especially for the lead times

longer than 3 days (Buizza, 2006; Tien et al., 2013). Never-

theless, the fact that there are several different operational TC

models in different ocean basins together with various ret-

rospective experiments suggests a pathway to examine the

relative roles of the initial condition errors and the model

errors. Specifically, different models have different treatment

of dynamical cores, physical parametrizations, numerical

approximations, boundary conditions, or resolutions, which

may produce different feedbacks and error growth behaviour

with time. Assuming the same initial intensity errors, the vari-

ation of 𝜖 among these models may provide some insight

into the nature of the intensity error growth related to initial

condition errors and model errors.

In this regard, Figure 6b–d show the error growth analy-

sis for the GFDL model similar to that for the HWRF model

during the same 2012–2016 period, along with the other two

retrospective experiments H215 and H216. Despite differ-

ent model configurations and nonlinear interaction among

error sources, the main characteristic of 𝜖 is very consis-

tent between the GFDL and different versions of the HWRF

model, with the same faster error growth rate for higher inten-

sity. Similarly, the different error growth rates in all three

basins also accord well among the HWRF model upgrades,

with the lowest growth rate in the NATL basin and the fastest

growth rate in the WPAC basin. Except for the issue with a

limited sample size for the 125–180 kt bin, the overall consis-

tency of 𝜖 among the HWRF, the GFDL, H215, H216, and

the axisymmetric model presented in KM16 indicates that

the increase of 𝜖 with the storm intensity during the transient

period is an inherent property of TC dynamics regardless of

modelling systems or ocean basins.

To demonstrate the implication of the above error growth

characteristic, Figure 7 shows an example of real-time inten-

sity forecasts for 14 continuous cycles of hurricane Sandy

FIGURE 7 Real-time intensity forecasts of hurricane Sandy (2012) during

its developing stage from 0000 UTC on 22 to 1200 UTC on 25 October

2012 obtained from the operational HWRF model. Note that only the first

18 h of the HWRF intensity forecasts are plotted for each cycle to facilitate

comparison with the error growth rate in Figure 6 [Colour figure can be

viewed at wileyonlinelibrary.com]

(2012) by the HWRF model, starting from 0000 UTC on 22

October to 1200 UTC on 25 October 2012. For the sake of

error growth visualization, only the first 18 h of each cycle

are plotted to facilitate the comparison with the error growth

rate in Figure 6. As seen from this example of Sandy fore-

casts, the VMAX errors indeed evolve relatively slowly for the

early cycles from 0000 to 1200 UTC on 22 October, with an

averaged 18 h error growth of ∼10 kt. As Sandy reached a

strength of 40 kt between 1800 UTC 22 and 1200 UTC 23,

the VMAX error growth becomes faster with an averaged 18 h

growth rate of ∼16 kt. From 1800 UTC 23 to 0600 UTC 24

during which Sandy became stronger, HWRF exhibits mixed

behaviour with one cycle overestimating the intensity whereas

other cycles intensify but quickly decay. As soon as Sandy
reached >85 kt after 1200 UTC 24, all cycles show a strongly

negative bias with a systematical spin-down during first 18 h.

From these forecasts of hurricane Sandy, one can see that the

error growth rate clearly depends on the storm initial intensity

with larger error growth for higher intensity. This dependence

of the error growth rate on the storm initial intensity explains

the progressively larger spread of the composite intensity time

series seen in Figure 7. Apparently, the VMAX error spread

for this case of Sandy is consistent with the overall statis-

tics shown in Figure 6, which reveals the intricate nature of

the intensity error growth during TC development. From an

operational forecasting perspective, one thus expects to see a

larger spread of an intensity ensemble with time, which render

intensity forecasts more challenging as TCs intensify.

4.3 Intensity error saturation time

With both conditions related to the existence of the error sat-

uration and the dependence of the error growth rate on storm

http://wileyonlinelibrary.com
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FIGURE 8 As Figure 6, but for the intensity error saturation time 𝜏 (h) as a function of intensity bins [Colour figure can be viewed at wileyonlinelibrary.com]

intensity obtained from the real-time statistics, an immediate

consequence is that the time interval during which an ini-

tial intensity error will approach the saturation limit Γ must

become shorter as TCs evolve. This is because a larger growth

rate would allow an error to approach Γ faster, assuming the

same value for Γ.

Figure 8 shows 𝜏 as a function of TC intensity bins for

the 2012–2016 real-time verification. As anticipated, 𝜏 is

markedly shortened for higher intensity in both the HWRF

and the GFDL models; it is about 72 h for the intensity<65 kt,

and quickly reduces to ∼18–20 h for the intensity >85 kt in

all three ocean basins. This reduced saturation time implies

that a dynamical model would have a shorter time (∼18–20 h)

to predict intensity for initially stronger storms than for ini-

tially weaker storms (∼72 h). In this regard, intensity forecasts

based on dynamical models would become indistinguishable

from a climatological forecast after reaching the error satura-

tion if the right environment for intensification is ensured.

The above interpretation of a shorter forecast range for

higher intensity is consistent with the faster error growth

for higher intensity seen in Figure 6, but caution is advised.

Note again that the intensity of an actual storm is sensitive

to landfall, vertical wind shear environment, or SST condi-

tions. Therefore, the PIP of a real-time intensity forecast may

depend more crucially on TC movement than on the inher-

ent chaotic properties in practice. Any intensity change due

to a predictable track forecast must be distinguished from the

IIP associated with the saturation time 𝜏 shown in Figure 8,

which is applied only to the TC internal dynamics under a

fixed environmental condition.

Similar to analysis of the error growth rate in Figure 6, the

estimation of 𝜏 presented in Figure 8 is admittedly crude for

the strongest intensity bin 120–180 kt due to the small sample

size. In operational practice, a TC may have no time to reach

its saturation, let alone stay at the mature stage, for more than

18 h so that 𝜏 can be evaluated. Therefore, the intensity errors

obtained from real-time verification are not just due to the

TC internal dynamics, but also due to model errors and incor-

rect track forecasts that the stratification method presented in

section 3 could not completely filter.

In addition to the aforementioned track-dependence issue, it

is generally hard to attribute the error growth either to the ini-

tial conditions inside the chaotic attractor or to model initial

balance adjustment for TCs of Category 4 and above. Thus,

http://wileyonlinelibrary.com
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the interpretation of the TC intensity error saturation for the

intensity bins >120 kt is subject to large uncertainties, which

can be seen by the large error bars in Figures 6 and 8. The

best approach to examine the intensity error saturation time at

the high-intensity limit is to select only TC cases that develop

and maintain their mature stage for several days, because this

long quasi-stationary stage would allow us to better estimate

the error growth rate as well as Γ with minimal inadvertent

impacts of the environment. However, this condition results

in a sample size which is too small to achieve significant

statistics, and so is not presented here.

5 HWRF IDEALIZED EXPERIMENTS

In the most optimistic scenario of TC model development,

one could argue that future model advances could lead to a

perfect TC model with a perfect vortex initialization scheme.

However, random fluctuations at all model grid points are

unavoidable regardless of how perfect a modelling system or

vortex initialization is. This type of random error underlines

the intrinsic predictability limit proposed by Lorenz (1963;

1969). Despite various modelling and theoretical work on

atmospheric predictability to determine the existence of such

an intrinsic limit for TC intensity, the degree to which ran-

dom errors can affect the intensity predictability has not been

adequately addressed due to the subtle distinction between the

transient stage and the MPI stage. As always, this type of the

random error growth depends not only on the TC intrinsic

dynamics but also on specific TC models and assumptions.

To help quantify the intrinsic limit of TC intensity errors

for the HWRF model from this perspective, we analyze in

this section a set of idealized experiments with the HWRF

model in which random wind errors are introduced at differ-

ent stages of TC development to see how these random errors

will evolve and become saturated with time under a perfect

model scenario. This is an important issue to address, because

it sets a threshold on the lowest absolute VMAX error that the

HWRF model can be improved. As emphasized in section 3,

our design of adding random perturbations to the model ref-

erence state in this study is not applied at the initial time

as in Nguyen et al. (2008). Instead, the random errors are

introduced along the trajectory of TC development during the

vortex intensification. This design allows us to examine how

the intensity error growth rate varies with storm intensity sim-

ilar to real-time forecasts, which could not be addressed in the

study by Nguyen et al. (2008).

Figure 9a shows the growth of the VMAX errors relative

to the CTL trajectory during the entire development of the

model vortex. It is of interest to notice from these idealized

experiments that the VMAX errors increase rapidly at first but

then approach a saturation limit after the model vortex reaches

its peak intensity very similar to real-time verification, irre-

spective of when and how the wind perturbations are added

along the CTL trajectory. Although the VMAX variation could

sporadically reach 7–9 m s−1 (∼15–16 kt) as seen in Figure 9a,

the average VMAX error does not grow indefinitely but is con-

fined within a range of 2–5 m s−1 (a standard deviation is

3 m s−1 in our current experiment set-up).

Similar to the faster error growth for higher intensity as

in real-time forecasts (cf. Figure 6), we also notice a faster

growth rate of random errors for higher intensities during the

idealized vortex intensification from 12 to 48 h (Figure 9b).

This consistency between real-time verification and ideal-

ized experiments strongly suggests that the dependence of the

error growth on the storm intensity is a general property of

the TC dynamics.

Although the exact value of the error saturation may vary in

different large-scale environments, as seen in real-time statis-

tics for different basins, it should be noted that the existence of

the error saturation associated with the random perturbations

in these idealized experiments is the most significant result

here. This is because the idealized error saturation reveals the

lowest absolute VMAX error that one could obtain with the cur-

rent HWRF model in a given environment, assuming a perfect

model and vortex initialization. In reality, the saturation VMAX

error is significantly larger (cf. Figures 3 and 5) due to vari-

ous issues such as model deficiencies, boundary conditions,

the model spin-up/spin-down issues as well as observational

errors (Torn and Snyder, 2012; Landsea and Franklin, 2013).

Nonetheless, the lowest bound of the intensity variation as

seen in Figure 9 could at least indicate the limit in the inten-

sity forecast accuracy that one could expect to achieve for the

HWRF model in future, based on the VMAX metric.

To look further into the distribution of the wind variation

beyond the point-like VMAX metric, Figures 10 and 11 show

the horizontal and vertical distributions of the wind speed

standard deviations for the transient and the quasi-stationary

stages as obtained from an ensemble experiment in which ran-

dom wind perturbations are specifically added to the CTL

trajectory at t = 18 h into integration. As anticipated, the vari-

ation of the wind speed quickly grows in magnitude during

the transient stage (Figure 10a,b), and it is mostly confined

within the storm central region with no further change in

magnitude during the quasi-stationary stage. However, it is of

more significance to notice that the largest wind speed vari-

ation is not located at the radius of maximum wind (RMW),

but instead inside the eye region (Figure 10b–d). Specifi-

cally, a wavenumber-1 structure of the wind speed variation

in the eye region with the peak amplitude more than 8 m s−1

is coherently captured during the quasi-stationary period.

Unlike the transient stage during which the intensity variation

mostly amplifies, the intensity variation is nearly unchanged

during the quasi-stationary stage, as seen in both vertical

and horizontal cross-sections (cf. Figures 10c,d and 11c,d).

Although there are some fluctuations in the distribution of

these wind speed variations, the depth of the largest area of

wind variation appears to extend up to ∼500 hPa (Figure 11),
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FIGURE 9 (a) Time series of the VMAX obtained from the control experiment (black solid curve, m s−1) using the HWRF idealized configuration, and the

ensemble of the VMAX deviations (thin coloured curves, m s−1) relative to the control experiment using different realizations of random wind perturbations at

different stages of the model vortex development. The horizontal grey line denotes the standard deviation of the error variations during the quasi-stationary

stage. (b) The averaged 18 h growth rate of the VMAX errors (kt h−1) obtained from the idealized experiments with random wind perturbation added at different

stages of the model vortex development as indicated on the x-axis. Yellow columns denote the intensifying stage, and blue columns denote the growth rate at

the mature stage. [Colour figure can be viewed at wileyonlinelibrary.com]

revealing the high sensitivity of the TC inner core to random

perturbations.

At the RMW location, we notice that the wind speed varia-

tion is less than half the magnitude of the wind variation in the

eye region, which is consistent with the average of the VMAX

variation in the range 3–4 m s−1 seen in Figure 9a. In this

regard, the use of a single point-like VMAX metric at the RMW

to describe the variability of the storm intensity is insuffi-

cient to capture the variability of the entire TC structure, as

discussed in Vukicevic et al. (2013).

6 DISCUSSION AND CONCLUSION

In this study, the characteristics of TC intensity error growth

in operational models and their implications for practical

intensity predictability were presented, using the operational

intensity forecasts by the HWRF model and the HWRF

FY2015 and FY2016 retrospective experiments. Given the

current practice of TC intensity forecasting whereby intensity

predictions need to be issued at all stages of TC develop-

ment, two conditions on TC intensity errors that are required

to quantify the intensity predictability were examined: (a)

the existence of a stationary intensity error saturation, and

(b) the dependence of the intensity error growth rate on TC

initial intensity during the intensification stage. The first con-

dition ensures that an initial error will grow and eventually

approach a bounded limit, while the second condition ensures

that the time required for the initial error to approach the

saturation limit is finite. These two conditions allow us to

effectively examine the range of TC intensity predictability

for any numerical model.

Analyses of real-time intensity forecasts for the three major

ocean basins using different versions of the HWRF and the
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FIGURE 10 Horizontal cross-sections of the 10 m wind (vectors) during the transient stage valid at (a) t = 36 h, (b) t = 48 h, and during the quasi-stationary

stage valid at (c) t = 72 h, and (d) t = 84 h into integration, obtained from the control experiment. The ensemble-averaged standard deviations of the wind

speed (shading, m s−1) are obtained from experiments with random wind perturbations added to the control trajectory at 12 h into integration. The solid red

circles denote the radius of maximum surface wind at each time [Colour figure can be viewed at wileyonlinelibrary.com]

GFDL models demonstrated the existence of an intensity

error saturation at 4–5 day lead times, which varies in the

range 12–18 kt. While this saturation of the intensity errors

appears to be trivial from a practical perspective given the

bounded maximum intensity that a TC can attain in a pre-

scribed environment, the existence of such an error saturation

implies a much more profound property of the TC chaotic

dynamics that is currently not understood. Specifically, it is

not known if a chaotic MPI attractor exist, and if so, what is

the size of this attractor and how fast an initial error inside this

attractor would evolve. These questions are open at present

due to the interference of observational errors and various

external factors. In this regard, our results about the error

saturation in real-time analyses not only helps confirm the

existence of the chaotic MPI attractor as speculated in KM17,

but also indicates the size of this attractor. In particular, we

found that the error saturation is basin-dependent, with the

lowest value in the North Atlantic basin (∼12–14 kt) and the

highest value in the northwestern Pacific basin (∼16–18 kt).

Such different intensity error saturation in different basins

as obtained from the HWRF model strongly suggests the

HWRF’s intensity predictability limit is not universal, but

it changes from one basin to another depending on the

large-scale conditions.

While the exact value of the error saturation is still incon-

clusive due to the limited sample size, the observational

errors, the model specifics as well as basin characteristics,

the existence of such an error saturation as inferred from
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FIGURE 11 As Figure 10, but for the west–east vertical cross-section through the storm centre of the VMAX deviations (shading, m s−1) with respect to the

control run, and the tangential wind from the control run (contours, m s−1) [Colour figure can be viewed at wileyonlinelibrary.com]

the HWRF real-time analyses is most apparent for strong

TCs as they approach their mature stage. From a dynamical

system perspective, the existence of such an error satura-

tion suggests that the TC dynamics have an internal property

that may prevent us from reducing the absolute intensity

errors below a certain threshold, as speculated in KM16.

This is a significant finding, because it indicates that a large

part of the current intensity errors in operational TC models

should be attributed to the intrinsic property of TC dynamics,

rather than to model deficiencies. In fact, the error satu-

ration presented in this study is not limited to dynamical

models such as the HWRF or GFDL models. Our examina-

tion of other statistical-dynamical models used for operational

intensity forecasts captures similar error behaviours as in the

HWRF model at 4–5 day lead time. However, the error growth

in these statistical-dynamical models during the transient

period is somewhat different due to underlying statistical

assumptions in these models that are beyond the TC dynamics

examined in this study.

By additionally stratifying the real-time intensity forecast

errors based on different intensity bins, it was found that the

HWRF intensity errors grow consistently faster for higher

intensities during the intensification period. Using VMAX as

a metric to measure the growth of intensity errors, we found

that the HWRF intensity error growth rate is about 0.3 kt h−1

for an intensity bin of 25–45 kt, and approaches ∼1.1 kt h−1

for intensity bins >85–100 kt. For larger intensity bins, the

VMAX error growth rate tends to be smaller but the exact

value of this saturation growth rate is very uncertain due to

the limited sample size as well as the prevailing bias of the

model spin-down associated with unbalanced adjustment at

the high-intensity limit.

http://wileyonlinelibrary.com
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Given the existence of an intensity error saturation and a

faster error growth rate for higher intensities during the inten-

sifying period, we propose that the range of the TC intensity

predictability is limited. Our examination of the time interval

in which an initial error approaches the saturation limit indeed

showed a shorter time to reach the saturation for higher inten-

sities. Assuming that (a) a favourable environment is ensured

such that a TC can reach and maintain its MPI limit for the

error to grow and become saturated, and (b) the MPI attractor

is chaotic such that any error will quickly grow and occupy

the entire attractor, this result would imply that the range of

intensity predictability for stronger storms should be reduced

as they intensify. For Category 1 storms and above, intensity

errors approach the saturation limit in <18 h, thus restrain-

ing our ability to forecast TC intensity at a longer range.

This result is consistent with the estimation based on a linear

inverse model presented in figure 11 of Hakim (2013), and

the doubling time of 3 h within the axisymmetric framework

recently reported in Kieu and Moon (2016). Of course, our

conclusion of a limited predictability for TC intensity in this

study is applied only to the VMAX metric and the HWRF model

under an assumption that favourable environments are well

maintained. It is entirely possible that predicting the phase

of the TC development such as rapid intensification or rapid

weakening, or use of different intensity metrics, could give

a different range of predictability, which this work could not

address.

In a further attempt to minimize the impacts of environ-

mental factors and observational errors on the estimation of

error saturation in real-time forecasts, idealized experiments

with the HWRF model under a perfect model scenario were

also performed. By implementing a scheme that allows for

adding random perturbations at different stages of the model

intensification, it was again demonstrated that the HWRF

model possesses an inherent error saturation very similar to

that obtained from real-time forecasts, even under the perfect

model scenario regardless of when and how the random per-

turbations are added. However, the saturation limit obtained

from the HWRF idealized experiments is ∼ 3 m s−1, which

is substantially smaller than that obtained from real-time

statistics that we dont fully understand.

On the one hand, the smaller error saturation as obtained

from the HWRF idealized experiments implies that a large

fraction of intensity errors must be associated with other

factors such as model errors, vortex initialization, or model

physics that we can hope to further reduce in future. On the

other hand, the idealized error saturation reveals the minimum

absolute intensity threshold that one can reduce in the HWRF

model with the current configuration. The exact value of this

lowest intensity error threshold as obtained from the HWRF

idealized experiments is by no means conclusive, because this

threshold depends on the large-scale environment and specific

model settings. In addition, our assumptions of stationary

intensity error statistics as derived from the 5-day simulations,

together with the idealized environment needed to ensure the

statistics of intensifying cycles, are not always applicable in

practice. As such the saturation limit of ∼3 m s−1 is specific to

the current idealized HWRF experiments, and it may change

in future upgrades of the HWRF model. More details of the

dependence of the intensity error saturation on the ambient

environment will be presented in future studies.
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